000 01593nam a2200373 i 4500
999 _c46838
_d46838
003 UDJG
006 a||||go|||| 001 0
007 cr aa aaaaaaaa
008 210216t2016 gw ||go|||| 001 0 eng d
020 _a9783110476316
040 _aUDJG
_brum
041 _aeng
100 1 _aMANDREKAR, Vidyadhar S.
_941757
245 1 0 _aWeak convergence of stochastic processes
_h[online] :
_bWith applications to statistical limit theorems /
_cVidyadhar S. Mandrekar
260 _aBerlin :
_bDe Gruyter,
_c2016
300 _a1 resursă online
_a(142 p.)
505 _tFrontmatter
_tContents
_t1. Weak convergence of stochastic processes
_t2. Weak convergence in metric spaces
_t3. Weak convergence on C[0, 1] and D[0,∞)
_t4. Central limit theorem for semi-martingales and applications
_t5. Central limit theorems for dependent random variables
_t6. Empirical process
_tBibliography
536 _aAchiziție prin proiectul Anelis Plus 2020.
580 _aTN/2020
648 _2UDJG
650 7 _2UDJG
_aDE-Matematică
_9585
651 _2UDJG
655 _2UDJG
690 7 _935248
_acărți electronice
690 7 _acărți achiziții
_93407
690 7 _acărți străine
_9102
690 7 _941170
_aprobabilitate
690 7 _97253
_astatistică
690 7 _98905
_aprocese stochastice
690 7 _91998
_ateoria probabilităților
850 _aUDJG
856 4 1 _uhttps://www-degruyter-com.am.e-nformation.ro/document/doi/10.1515/9783110476316/html
_zAcces la textul integral numai din contul de acces mobil.
942 _2udc
_cEBK